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1 Introduction

Motivation

HIV primarily attacks white blood cells (CD4+)...

Wikimedia Commons

• Anti-retroviral treatments (ARTs) target viral replication:
⇓ virus, ⇑ CD4+

• Treatment initiation: when CD4+ <350 cells/µL of blood

• However: recent evidence early treatment better!

– Population level ⇒ ⇓ TRANSMISSION

– Individual level ⇒ ⇑ SURVIVAL

Why not treat upon diagnosis? ⇒ POSSIBILITY OF DRUG RESISTANCE

This motivates our study of viral dynamics in patients on ART.

Understanding Viral Dynamics on Treatment

VIRAL LOAD:

• Treatment reduces viral load to <50c/mL → “undetectable”

• Mean viral load is 20-30c/mL (Dornadula et al., 1999)

Concern: Due to HIV replication? VERY error prone process - could lead
to emerging drug resistance!

But: A study on structured treatment interruptions (STIs) showed that
dominant virus during STIs too closely “related” to pre-treatment virus
for there to be ongoing viral replication. (Joos et al., 2008)
————————————————————————————————–
VIRAL BLIPS: Very short periods of “detectable” viral load.

Data courtesy of Dr. M. Di Mascio, NIH

Small blips shown to be random biological and statistical variation around
mean HIV-1 levels below 50 copies/mL. (Nettles et al., 2005)

Latently Infected Cells

• The HIV virus replicates in productively infected cells.

• But sometimes, after getting infected, a cell can go quiet... these are
latently infected cells:

– Not detectable by the immune system

– Not affected by drugs, which target viral replication.

• Latently infected can later re-activate and start producing virus.

Size of Reservoir:
Differing estimates:
0.2 − 16.8/106 cells (Finzi et al., 1997)

55 ± 108/106 cells (Fondere et al., 2003)

Lifetime of Reservoir:
Mean half-life t1/2 =44.2 months!
Could take >70 years to eradicate.

(Siciliano et al., Nature Medicine (2005) amongst others.)

Question

COULD NON-ZERO VIRAL LOAD AND VIRAL BLIPS BE LARGELY
ATTRIBUTABLE TO ACTIVATION OF LATENTLY INFECTED CELLS?
Consequence:
Early treatment may be safer with regards to emerging drug resistance.
————————————————————————————————–

Approach

Develop a stochastic viral dynamics model that includes latent cell acti-
vation that gives a low viral load and viral blips as rare-event deviations
from the mean.

2 Stochastic Viral Dynamics Model

2.1 Schematic

Let: L=latently infected cells;
T ∗=productively infected cells;
V =virus.
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Param. Meaning

a activation rate of L
ρ replication rate of L
f fraction of cells

that become L
ε drug efficacy
k mass-action

infection rate
Ts “steady” number

of healthy cells
δL death rate of L
δ death rate of T ∗

p production rate of V
c clearance rate of V

2.2 Joint Probability Function

We assume the system behaves as a multi-type continuous time branching
process.

Define the joint probability function

Pℓ,n,v(t) = P (L = ℓ, T ∗ = n, V = v; t)

Initial condition
At t = 0 there are L0 latently infected cells, T ∗

0 productively infected cells,
and V virions. Then

Pℓ,n,v(0) = δℓ,L0
δn,T∗

0
δv,V0

Differential Equation
We can derive a forward Chapman-Kolmogorov differential equation for
the joint probability function Pℓ,n,v(t):

∂Pℓ,n,v(t)

∂t
= a ((ℓ + 1)Pℓ+1,n−1,v − ℓPℓ,n,v)

+ δL ((ℓ + 1)Pℓ+1,n,v − ℓPℓ,n,v) + ρ ((ℓ − 1)Pℓ−1,n,v − ℓPℓ,n,v)

+ f(1 − ε)kTs ((ℓ − 1)Pℓ−1,n,v+1 − ℓPℓ,n,v)

+ δ ((n + 1)Pℓ,n+1,v − nPℓ,n,v)

+ (1 − f)(1 − ε)kTs ((n − 1)Pℓ,n−1,v+1 − nPℓ,n,v)

+ pn (Pℓ,n,v−1 − Pℓ,n,v) + c ((v + 1)Pℓ,v+1,n − vPℓ,n,v)

This is also called a Master Equation.
————————————————————————————————–

NOTE: Mean behaviour of system corresponds to the deterministic
model

M ′

L(t) =(ρ − a − δL)ML + f(1 − ε)kTSMV

M ′

T (t) =(a − δ)MT + (1 − f)(1 − ε)kTSMV

M ′

V (t) =pMT − cMV − (1 − ε)kTSMV

where ML(t), MT (t), and MV (t) represent the mean # of L, T ∗, and V ,
respectively.

2.3 Probability Generating Function

We use the differential equation for Pℓ,n,v(t) to derive equations for the
probability generating function (pgf).

Define the pgf G(x, y, z; t) such that:

G(x, y, z; t) =

∞
∑

ℓ=0

∞
∑

n=0

∞
∑

v=0

Pℓ,n,v(t)xℓynzv

Uses of pgf G(x, y, z; t):
⇒ Gives us moments

e.g. Mean # virions =

∞
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⇒ Gives us the probability distribution of... anything!
e.g. Individual probabilities of # of virions:

P (V = v) =
1

v!
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We solve for the pgf numerically and use it to calculate any desired
marginal or joint probability distributions.

3 Latent Reservoir Extinction

We first consider the probability of extinction of the latent reservoir.

3.1 Probability Distribution Calculation

We can obtain the cumulative probability distribution directly from the
pgf: Pext(t) = P (L = 0, t) = G(0, 1, 1; t). The extinction probability distri-
bution is therefore:

pext(t) =
d

dt
G(0, 1, 1; t),

which we can calculate numerically.

Special case - ε = 1
In the (unrealistic) case of perfect drug efficacy (ε = 1), latent reservoir
dynamics are dictated by a single-type birth and death process which has
a known analytic pgf. Therefore we have an analytic expression for the
latent reservoir extinction pdf:

pext(t) =
d

dt

[

(a + δL)
(

1 − e−(ρ−a−δL)t
)

µ − (a + δL)e−(ρ−a−δL)t

]L0

.

Sample extinction pdf, ε = 1:

Mean reservoir lifetime ≈70 years
(matched to Siliciano et al., 2003)

Parameters: c = 23day−1, p = 20000day−1, δ =

1day−1, δL = 0.01day−1 (as in Kim&Perelson, 2005).

a and ρ fit to match measured reservoir half-life and

low viral load, a = 5.68 × 10
−5day−1, ρ = 9.67 ×

10
−3day−1.

3.2 Latent Reservoir Stability

We can use ourmodel tomake predictions on the impact of improved drug
efficacy on the stability of the latent reservoir. Improved drug efficacy
increases the decay rate of the reservoir (Ramratnam et al., 2004).

We consider the extreme case of poor drug efficacy (ε = 0.2) for fractions
of newly infected cells becoming latent f =0.001, 0.01, 0.1.

Reduction in Lifetime
As drug efficacy improves (ε → 1) the
mean lifetime of the latent reservoir is de-
creased. However, only in the unlikely
case of f = 0.1 is the reduction apprecia-
ble (≈15%).

Parameters as above with a, ρ fit to reservoir half-

life of 60 months and low viral load for ε = 0.2,

f =0.001, 0.01, 0.1.

3.2 Latent Reservoir Stability (cont’d)
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Extinction Probability Distributions
Observe in the full extinction probabil-
ity distribution (shown here for f = 0.1,
the extreme case for illustrative purposes)
that both the lifetime mean and the vari-
ance are reduced as ε → 1.

Parameters as above with a, ρ fit to reservoir half-life

of 60 months and low viral load for ε = 0.2, f = 0.1.

4 Viral loads and blip probabilities

We are currently working towards fitting biologically reasonable parame-
ters such that our model predictions are consistent with blip data.

Our hypothesis centers on the role of latent cell activation in viral load.
Therefore, of particular concern is the size of the latent reservoir, for which
there are different estimates (Finzi et al. 1997, Fondere et al. 2003). Below
we show results for an initial latent reservoir sizeL0=1 and 10 per 106 cells.

Viral load probability distributions
Below are viral load pdfs for different parameters. We pay particular at-
tention to the tail for viral load greater than the detection level of 50c/mL
(inset), which gives an the range of predicted blip sizes.
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(c)
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(a) L0=10 per 106 cells, p=500day−1, a, ρ

fit to reservoir t1/2=60 months with viral

load 40c/mL at 6 months for ε=0.7, f=0.

(b) L0=1 per 106 cells, p=5000day−1, a, ρ

fit to reservoir t1/2=60 months with viral

load 35c/mL at 6 months for ε=0.9, f=0.

(c) L0=1 per 106 cells, p=5000day−1, a, ρ

fit to reservoir t1/2=60months with viral

load 30c/mL at 6 months for ε=0.9, f=0.

Other parameters as in Section 3.

We notice, depending on our parameters, different ranges of potential blip
sizes within the span of small blips shown in Nettles et al. 2005.

Probability of a blip
We can also directly calculate the probability of a blip, P (V > 50c/mL; t):
the probability at time t that the viral load is greater than 50 copies/mL.
The curves (a), (b), (c) correspond to (a), (b), (c) above.
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The tail of the distribution and resulting
blip probabilities over time are quite sen-
sitive to parameter choice. However, since
blips are rare events, it is not obvious how
to extract blip probabilities from available
data. Therefore parameter regime selection
remains unclear.

5 Implication - Mechanism for Drug Resistance

Model suggests that latent cell reactivation is a plausible mechanism for
small viral blips. Then

• Drug resistance might not arise through mutation during ongoing
viral replication.

• But mutants may arise during initial stages of infection
(Ribeiro&Bonhoeffer, 2000) and seed the latent reservoir!

MODEL EXTENSION - FUTURE WORK:

What’s new: Drug resistant latent reservoir.

6 Summary

• Stochastic model of latent cell activation in HIV+ patients shows:

– Long-term latent reservoir extinction

– Undetectable, non-zero viral load

– Small viral blips (though not large viral blips)

• Now: determine parameters so model is consistent with blip data

• Next: - extend model to understand evolution of drug resistance
- add time-dependent activation a = a(t) to better model
antigenic stimulation and to try to understand large blips.
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